GRAPHS OF FUNDAMENTAL FUNCTIONS
The following are fundamental functions whose stated properties and graphs you must know.

1. The Constant Function
\[y = f(x) = c \]

Properties:
(I) Domain: \(x \in (-\infty, \infty) \)
(II) Range: \(y \in \{c\} \) or \(y = c \).
(III) y-intercept: \((0, c)\)
\[x \text{-intercept: None except for } y = f(x) = 0 \] (In this case the x-axis is the graph)
(IV) Constant over \(x \in (-\infty, \infty) \), that is, always constant
(V) Symmetry: Even (y-axis symmetry)
(VI) End Behavior:
\[\text{As } x \to -\infty, y = c \]
\[\text{As } x \to \infty, y = c \]
(VII) No asymptote.

2. The Identity Function
\[y = f(x) = x \]

Properties:
(I) Domain: \(x \in (-\infty, \infty) \)
(II) Range: \(y \in (-\infty, \infty) \).
(III) y-intercept: \((0,0)\); \(x \text{-intercept: } (0,0) \)
(IV) Increasing over \(x \in (-\infty, \infty) \), that is, always increasing
(V) Symmetry: Odd (origin symmetry)
(VI) End Behavior:
\[\text{As } x \to -\infty, y \to -\infty \]
\[\text{As } x \to \infty, y \to \infty \]
(VII) No asymptote.
3. The Absolute Value Function

\[y = f(x) = |x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \]

Properties:

(I) Domain: \(x \in (-\infty, \infty) \)

(II) Range: \(y \in [0, \infty) \).

(III) y-intercept: (0,0); x-intercept: (0,0)

(IV) Decreasing over \(x \in (-\infty, 0) \). Increasing over \(x \in (0, \infty) \).

(V) Symmetry: Even (y-axis symmetry)

(VI) End Behavior: As \(x \to -\infty \), \(y \to \infty \)

As \(x \to \infty \), \(y \to \infty \)

(VII) No asymptote.

4. The Square Function

\[y = f(x) = x^2 \]

Properties:

(I) Domain: \(x \in (-\infty, \infty) \)

(II) Range: \(y \in [0, \infty) \).

(III) y-intercept: (0,0); x-intercept: (0,0)

(IV) Decreasing over \(x \in (-\infty, 0) \). Increasing over \(x \in (0, \infty) \).

(V) Symmetry: Even (y-axis symmetry)

(VI) End Behavior: As \(x \to -\infty \), \(y \to \infty \)

As \(x \to \infty \), \(y \to \infty \)

(VII) No asymptote.

5. The Cube Function

\[y = f(x) = x^3 \]

Properties:

(I) Domain: \(x \in (-\infty, \infty) \)

(II) Range: \(y \in (-\infty, \infty) \).

(III) y-intercept: (0,0); x-intercept: (0,0)

(IV) Increasing over \(x \in (-\infty, \infty) \); that is, always increasing

(V) Symmetry: Odd (origin symmetry)

(VI) End Behavior: As \(x \to -\infty \), \(y \to -\infty \)

As \(x \to \infty \), \(y \to \infty \)

(VII) No asymptote.
6. The Square-Root Function

\[y = f(x) = x^{1/2} = \sqrt{x} \]

Properties:

(I) **Domain:** \(x \in [0, \infty) \)

(II) **Range:** \(y \in [0, \infty) \)

(III) **y-intercept:** (0,0); **x-intercept:** (0,0)

(IV) **Increasing** over \(x \in (0, \infty) \).

(V) **Symmetry:** None

(VI) **End Behavior:**

- As \(x \to 0^+ \), \(y \to 0 \)
- As \(x \to \infty \), \(y \to \infty \)

(VII) No asymptote.

7. The Reciprocal Function

\[y = f(x) = \frac{1}{x} \]

Properties:

(I) **Domain:** \(x \in (-\infty, 0) \cup (0, \infty) \). That is, all real numbers except \(x = 0 \).

(II) **Range:** \(y \in (-\infty, 0) \cup (0, \infty) \). That is, all real numbers except \(y = 0 \).

(III) **y-intercept:** None; **x-intercept:** None

(IV) **Decreasing** over \(x \in (-\infty, 0) \) and over \(x \in (0, \infty) \).

(V) **Symmetry:** Odd (origin symmetry)

(VI) **End Behavior:**

- As \(x \to -\infty \), \(y \to 0 \)
- As \(x \to 0^- \) (approaches 0 from the left), \(y \to -\infty \)
- As \(x \to 0^+ \) (approaches 0 from the right), \(y \to \infty \)
- As \(x \to \infty \), \(y \to 0 \)

(VII) **Vertical asymptote:** \(x = 0 \) (y-axis); **Horizontal asymptote:** \(y = 0 \) (x-axis)
8. The Exponential Function

\[y = f(x) = e^x \]

Properties:

(I) Domain: \(x \in (-\infty, \infty) \)

(II) Range: \(y \in (0, \infty) \).

(III) y-intercept: (0,1); x-intercept: None

(IV) Increasing over \(x \in (-\infty, \infty) \); that is, always increasing

(V) Symmetry: None

(VI) End Behavior:
- As \(x \to -\infty \), \(y \to 0 \)
- As \(x \to \infty \), \(y \to \infty \)

(VII) Horizontal asymptote: \(y = 0 \) (the x-axis). No vertical asymptote.

9. The Natural Logarithm Function

\[y = f(x) = \ln(x) \]

Properties:

(I) Domain: \(x \in (0, \infty) \)

(II) Range: \(y \in (-\infty, \infty) \).

(III) y-intercept: None; x-intercept: (1,0)

(IV) Increasing over \(x \in (0, \infty) \); that is, always increasing

(V) Symmetry: None

(VI) End Behavior:
- As \(x \to 0^- \), \(y \to -\infty \)
- As \(x \to \infty \), \(y \to \infty \)

(VII) Vertical asymptote: \(x = 0 \) (the y-axis). No horizontal asymptote.

Note:

\(y = e^x \) and \(y = \ln(x) \) are inverse functions.

If two functions are inverses of each other then the domain of one is the range of the other and vice versa. For example, if \((2, -3)\) is a point on a function, then \((-3, 2)\) is a point on its inverse.

To get the graph of the inverse of a function from the graph of the function, simply reflect the graph about the line \(y = x \).

So if you start out with \(y = e^x \), you can get the graph of \(y = \ln(x) \), simply reflect the graph of \(y = e^x \) about the line \(y = x \).