MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the absolute value equation.

1) \(3|x - 3| = 18\) \(\Rightarrow\) \(|x - 3| = 6\)
 \(\therefore\) \(x = -3\) \(\land\) \(x = 9\)
 A) \(\{3, -9\}\)
 B) \(\{9, -3\}\)
 C) \(\{3\}\)
 D) \(\emptyset\)

2) \(|3x - 2| + 3 = 0\)
 \(|3x - 2| = -3\)
 A) \(\left\{-\frac{1}{3}\right\}\)
 B) \(\left\{-\frac{1}{3}, -\frac{5}{3}\right\}\)
 C) \(\left\{\frac{5}{3}, \frac{1}{3}\right\}\)
 D) \(\emptyset\)

Solve the inequality.

3) \(|7x| \leq 2\)
 \(-2 \leq 7x \leq 2\) \(\Rightarrow\) \(-\frac{2}{7} \leq x \leq \frac{2}{7}\)
 A) \(\left[-\frac{2}{7}, \frac{2}{7}\right]\)
 B) \(\left[-\frac{2}{7}, \frac{2}{7}\right]\)
 C) \(\left[0, \frac{2}{7}\right]\)
 D) \(\left[-\frac{7}{2}, \frac{7}{2}\right]\)

Solve the equation.

4) \(|n - 8| = |5 - n|\)
 A) \(\left\{\frac{13}{2}\right\}\)
 B) \(\{13\}\)
 C) \(\left\{-\frac{3}{2}\right\}\)
 D) \(\emptyset\)

\(n - 8 = 5 - n\) \(\lor\) \(n - 8 = -(5 - n)\)
\[2n = 13\]
\[n = \frac{13}{2} \lor -8 = -5\]
GRAPHS OF EQUATIONS
Symmetry in a graph is when there are matching points on both sides of a dividing line (or point). The graph forms a “mirror image” about the line.
To get a point symmetric with respect to the x-axis, think of the mirror image or "flipping" it over the x-axis.

Let's look at the point $(6, 4)$.

So to be symmetric with respect to the x-axis, for the point (x, y), you would get the point $(x, -y)$.

This is the point $(6, -4)$.
To get a graph symmetric with respect to the x-axis, think of the mirror image or “flipping” it over the x-axis.

Let's look at a graph.

So to be symmetric with respect to the x-axis, for every point (x, y) on the graph, the point $(x, -y)$ is also on the graph.
This is the point \((-6, 4)\).

Let's look at the point \((6, 4)\).

So to be symmetric with respect to the y-axis, for the point \((x, y)\), you would get the point \((-x, y)\).

To get a point symmetric with respect to the y-axis, think of the mirror image or "flipping" it over the y-axis.
Let's look at a graph

To get a graph symmetric with respect to the y-axis, think of the mirror image or "flipping" it over the y-axis.

So to be symmetric with respect to the y-axis, for every point \((x, y)\) on the graph, the point \((-x, y)\) is also on the graph.
So to be symmetric with respect to the origin, for the point \((x, y)\), you would get the point \((-x, -y)\).

Let's look at the point \((6,4)\).

To get a point symmetric with respect to the origin, think putting a push pin in the origin and rotating the graph \(180^\circ\) (like turning the paper over or standing on your head and looking at it).

This is the point \((-6, -4)\).
Let's look at a graph

To get a point symmetric with respect to the origin, think putting a push pin in the origin and rotating the graph 180° (like turning the paper over).

So to be symmetric with respect to the origin, for every point \((x, y)\) on the graph, the point \((-x, -y)\) is also on the graph.
Tests for Symmetry

Given an equation, you can test whether the graph of the equation has symmetry by the following:

<table>
<thead>
<tr>
<th>Axis</th>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-axis</td>
<td>Replace y by $-y$. After simplifying, if you get the original equation back it has x-axis symmetry</td>
<td></td>
</tr>
<tr>
<td>y-axis</td>
<td>Replace x by $-x$. After simplifying, if you get the original equation back it has y-axis symmetry</td>
<td></td>
</tr>
<tr>
<td>origin</td>
<td>Replace x by $-x$ and y by $-y$. After simplifying, if you get the original equation back it has origin symmetry</td>
<td></td>
</tr>
</tbody>
</table>
Test for symmetry:

\[y^2 - x - 4 = 0 \]

\[y^2 - (-x) - 4 = 0 \]

\[y^2 + x - 4 = 0 \]

So graph DOES NOT have y-axis symmetry

Replace \(x \) by \(-x\). After simplifying, if you get the original equation back it has y-axis symmetry.
Test for symmetry:

$$y^2 - x - 4 = 0$$

$$(-y)^2 - (-x) - 4 = 0$$

$$y^2 + x - 4 = 0$$

So graph **DOES NOT have** origin symmetry.

Replace x by $-x$ and y by $-y$. After simplifying, if you get the original equation back it has origin symmetry.
Finding x and y intercepts for a graph

The x-intercept is where a graph crosses the x-axis.

What is the common thing you notice about the x-intercepts of these graphs?

The y value of the point where they cross the axis will always be 0.

To find the x-intercept when we have an equation then, we will want the y value to be zero.
Now let's see how to find the y-intercept.

The y-intercept is where a line crosses the y-axis.

What is the common thing you notice about the y-intercepts of these lines?

The x value of the point where they cross the axis will always be 0.

To find the y-intercept when we have an equation then, we will want the x value to be zero.
Let's look at the equation $2x - 3y = 12$

Find the x-intercept. \[2x - 3(0) = 12 \]

We'll do this by plugging 0 in for y

\[\frac{2x}{2} = \frac{12}{2} \]

Now solve for x.

$x = 6$

So the place where this line crosses the x-axis is (6, 0)
2x \ - \ 3y = 12

Find the y-intercept. We'll do this by plugging 0 in for x

2(0) \ - \ 3y = 12

\[\frac{-3y}{-3} = \frac{12}{-3} \quad y = -4 \]

Now solve for y.

So the place where this line crosses the y-axis is (0, -4)

Since this was a linear equation, we could now graph the line
In this section we are going to use the point plotting method to graph equations. Look at the following equation.

\[y = x^2 - 4 \]

Let's find \(x\) and \(y\) intercepts. The \(x\) intercept is where the \(y\) value is zero.

\[
\begin{align*}
0 &= x^2 - 4 \\
+4 &= +4 \\
4 &= x^2
\end{align*}
\]

Solving for \(x\)

Since \(x^2\) is 4, \(x\) could be 2 or \(-2\) so the \(x\) intercepts are (2,0) and (-2,0)

The \(y\) intercept is where the \(x\) value is zero.

\[
y = 0^2 - 4
\]

This means then that \(y = -4\) and the \(y\) intercept is (0,-4)
Ex. 2.2 (p. 202)
Find the intercepts of the given equation.

32.) \(\frac{x}{5} + \frac{y}{3} = 1 \)
 \[\text{x-int: } \frac{x}{5} + \frac{0}{3} = 1 \]
 \[\frac{x}{5} = 1 \]
 \[x = 5 \quad (5, 0) \]

 \[\text{y-int: } \frac{0}{5} + \frac{y}{3} = 1 \]
 \[\frac{y}{3} = 1 \]
 \[y = 3 \quad (0, 3) \]

36.) \(x = y^2 - 5y + 6 \)
 \[\text{x-int: } x = 0^2 - 5(0) + 6 \]
 \[x = 6 \quad (6, 0) \]

 \[\text{y-int: } 0 = y^2 - 5y + 6 \]
 \[0 = (y-2)(y-3) \]
 \[y = 2, \quad y = 3 \]
 \[(0, 2), \quad (0, 3) \]

40.) \(xy = 1 \)
 \[\text{x-int: } x(0) = 1 \]
 \[0 = 1 \quad \emptyset \]

 \[\text{y-int: } (0)y = 1 \]
 \[0 = 1 \quad \emptyset \]

 \(\text{No intercepts.} \)

Determine the symmetries of the given function.

42.) \(x = y^2 + 1 \)
 \[\text{x-axis: } x = (-y)^2 + 1 \]
 \[x = y^2 + 1 \]
 \(\text{Yes} \)

 \[\text{y-axis: } -x = y^2 + 1 \]
 \[(-1) \]
 \[x = -y^2 - 1 \]
 \(\text{No} \)

 \[\text{origin: } -x = (-y)^2 + 1 \]
 \[x = (y)^2 + 1 \]
 \(\text{No} \)

\(\text{Only x-axis symmetry} \)
44.) \(y = 2x^3 - x \)

\[\text{y-axis: } y = 2(-x)^3 - (-x) \]
\[\text{Origin: } y = 2(-x)^3 - (-x) \]
\[\text{No } y = -2x^3 + x \]

\[\text{No } y = -2x^3 + x \]
\[\text{Yes } y = 2x^3 - x \]

\[\text{Only Origin Symmetry} \]

46.) \(y = -3x^6 + 2x^4 + x^2 \)

\[\text{y-axis: } y = -3(-x)^6 + 2(-x)^4 + (-x)^2 \]
\[\text{Yes } y = -3x^6 + 2x^4 + x^2 \]

\[\text{Origin: } y = -3(-x)^6 + 2(-x)^4 + (-x)^2 \]
\[\text{No } y = -3x^6 + 2x^4 + x^2 \]

\[\text{Only Y-axis Symmetry} \]

49.) \(x^2y^2 + 2xy = 1 \)

\[\text{y-axis: } (-x)^2y^2 + 2(-x)y = 1 \]
\[\text{No } x^2y^2 - 2xy = 1 \]

\[\text{No } x^2y^2 - 2xy = 1 \]
\[\text{Yes } x^2y^2 + 2xy = 1 \]

\[\text{Only Origin Symmetry} \]
The standard form of the equation of a circle with its center at the origin is

\[x^2 + y^2 = r^2 \]

\(r \) is the radius of the circle so if we take the square root of the right hand side, we'll know how big the radius is.

Notice that both the \(x \) and \(y \) terms are squared. Linear equations don’t have either the \(x \) or \(y \) terms squared. Parabolas have only the \(x \) term squared (or only the \(y \) term, but NOT both).
Let's look at the equation \(x^2 + y^2 = 9 \). This is \(r^2 \) so \(r = 3 \).

The center of the circle is at the origin and the radius is 3.

Let's graph this circle.

The circle is the set of all points that are 3 away (the radius) from the center. Let's count out 3 along each axis.

Center at (0, 0)
If the center of the circle is **NOT** at the origin then the equation for the standard form of a circle looks like this:

\[(x - h)^2 + (y - k)^2 = r^2\]

The center of the circle is at \((h, k)\).

\[(x - 3)^2 + (y - 1)^2 = 16\]

Find the center and radius and graph this circle.

The center of the circle is at \((h, k)\) which is \((3,1)\).

The radius is 4
If you take the equation of a circle in standard form for example:

\[(x + 2)^2 + (y - 4)^2 = 4\]

This is \(r^2\) so \(r = 2\)

Remember the center is at \((h, k)\) with \((x - h)\) and \((y - k)\) since the \(x\) is plus something and not minus, \((x + 2)\) can be written as \((x - (-2))\)

You can find the center and radius easily.
The center is at \((-2, 4)\) and the radius is 2.

But what if it was not in standard form but multiplied out (FOILED)

\[x^2 + 4x + 4 + y^2 - 8y + 16 = 4\]

Moving everything to one side in descending order and combining like terms we'd have:

\[x^2 + y^2 + 4x - 8y + 16 = 0\]
\[x^2 + y^2 + 4x - 8y + 16 = 0 \]

If we'd have started with it like this, we'd have to complete the square on both the x's and y's to get in standard form.

Group x terms with a place to complete the square

\[x^2 + 4x + \underline{} + y^2 - 8y + \underline{} = -16 + \underline{} + \underline{} \]

Move constant to the other side

Good idea to make blanks here so you don't forget to add to both sides when completing the square

Group y terms with a place to complete the square

Complete the square

Write factored and wahlah! back in standard form.

\[(x + 2)^2 + (y - 4)^2 = 4 \]
Now let's work some examples:

Find an equation of the circle with center at (0, 0) and radius 7.

Let's sub in center and radius values in the standard form

\[(x-a)^2 + (y-b)^2 = r^2\]

\[(x-0)^2 + (y-0)^2 = 7^2\]

\[x^2 + y^2 = 49\]
Find an equation of the circle with center at \((0, 0)\) that passes through the point \((-1, -4)\).

Since the center is at \((0, 0)\) we'll have

\[x^2 + y^2 = r^2 \]

The point \((-1, -4)\) is on the circle so should work when we plug it in the equation for \(x\) and \(y\):

\[
\begin{align*}
(-1)^2 + (-4)^2 &= r^2 \\
&= 1 + 16 = 17
\end{align*}
\]

Subbing this in for \(r^2\) we have:

\[x^2 + y^2 = 17 \]

\[r = \sqrt{17} \]
Find an equation of the circle with center at (-2, 5) and radius 6

Subbing in the values in standard form we have:

\[(x-h)^2 + (y-k)^2 = r^2\]

\[\left(x - -2\right)^2 + \left(y - 5\right)^2 = 6^2\]

\[(x+2)^2 + (y - 5)^2 = 36\]
Find an equation of the circle with center at (8, 2) and passes through the point (8, 0).

Subbing in the center values in standard form we have:

\[(x - h)^2 + (y - k)^2 = r^2\]

\[(x - 8)^2 + (y - 2)^2 = r^2\]

Since it passes through the point (8, 0) we can plug this point in for \(x\) and \(y\) to find \(r^2\).

\[(8 - 8)^2 + (0 - 2)^2 = r^2 = 4\]

\[(x - 8)^2 + (y - 2)^2 = 4\]
Identify the center and radius and sketch the graph:

\[
\frac{9x^2}{9} + \frac{9y^2}{9} = \frac{64}{9}
\]

To get in standard form we don't want coefficients on the squared terms so let's divide everything by 9.

\[
x^2 + y^2 = \frac{64}{9}
\]

So the center is at \((0, 0)\) and the radius is \(8/3\).
Identify the center and radius and sketch the graph:

\[(x + 4)^2 + (y - 3)^2 = 25\]

Remember the center values end up being the opposite sign of what is with the x and y and the right hand side is the radius squared.

So the center is at (-4, 3) and the radius is 5.
Find the center and radius of the circle:

\[x^2 + y^2 + 6x - 4y - 3 = 0 \]

We have to complete the square on both the x’s and y’s to get in standard form.

Group \(x \) terms and a place to complete the square

\[x^2 + 6x + \underline{9} + y^2 - 4y + \underline{4} = +3 + \underline{9} + 4 \]

Write factored for standard form.

\[(x + 3)^2 + (y - 2)^2 = 16 \]

So the center is at (-3, 2) and the radius is 4.
Find the equation (in slope-intercept form) of the line that passes through the centers of the circles with the given equations:

\[x^2 + y^2 - 6x + 10y - 4 = 0 \quad \text{and} \quad x^2 + y^2 + 8x - 16y + 2 = 0 \]

We need the slope and point.

We need the centers.

\[x^2 - 6x + 9 + y^2 + 10y + 25 = 4 + 9 + 25 \]
\[(x - 3)^2 + (y + 5)^2 = 38 \]

Center: \((3, -5)\)

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - (-5)}{-4 - 3} = -\frac{13}{7} \]

Using \((3, -5)\):

\[y - y_1 = m(x - x_1) \]
\[y - (-5) = -\frac{13}{7} (x - 3) \]

\[y = -\frac{13}{7} x + \frac{39}{7} - \frac{35}{7} \]

Center: \((-4, 8)\)

\[x^2 + 8x + 16 + y^2 - 16y + 64 = -2 + 16 + 64 \]
\[(x + 4)^2 + (y - 8)^2 = 78 \]

\[y + 5 = -\frac{13}{7} x + \frac{39}{7} - \frac{5}{7} \]
Determine if the equation is a circle. If so, find the center and radius of the circle.

70.) \(x^2 + y^2 + 1 = 0 \)

\[
\begin{align*}
 x^2 + y^2 &= -1 \\
 \text{Not a Circle} \quad \left(x^2 \text{ is not positive.} \right)
\end{align*}
\]

68.) \(3x^2 + 3y^2 + 6x = 0 \)

\[
\begin{align*}
 x^2 + y^2 + 2x &= 0 \\
 x^2 + 2x + 1 + y^2 &= 0 + 1 \\
 \text{Already a square} \\
 (x+1)^2 + (y-0)^2 &= 1 \\
 \text{Center: } (-1,0) \quad \text{radius} = 1
\end{align*}
\]

66.) \(x^2 + y^2 - 4x - 2y - 15 = 0 \)

\[
\begin{align*}
 x^2 - 4x + \frac{4}{4} + y^2 - 2y + \frac{1}{4} &= 15 + \frac{4}{4} + \frac{1}{4} \\
 (x-2)^2 + (y-1)^2 &= 20 \\
 \text{Center: } (2,1) \quad \text{radius} = \sqrt{20}
\end{align*}
\]

Find the center-radius form of the equation of the circle satisfying the given conditions.

62.) Center (1, 2); touching the x-axis

\[
\begin{align*}
 (x-1)^2 + (y-2)^2 &= r^2 \\
 (x-1)^2 + (y-0)^2 &= r^2 \\
 (1-1)^2 + (0-2)^2 &= r^2 \\
 4 &= r^2 \\
 \text{so:} \quad (x-1)^2 + (y-2)^2 &= 4
\end{align*}
\]
Find the center-radius form of the equation of the circle satisfying the given conditions.

64.) Diameter has endpoints (7, 4) and (-3, 6)

Center = Midpoint of Diameter = \(\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right) \)

\((h, k) = \left(\frac{7+(-3)}{2}, \frac{4+6}{2} \right) = (2, 5) \)

\((x-h)^2 + (y-k)^2 = r^2 \)

\((x-2)^2 + (y-5)^2 = r^2 \)

Using (7, 4): \((7-2)^2 + (4-5)^2 = r^2 \) OR Using (-3, 6):

\((-3-2)^2 + (6-5)^2 = r^2 \)

\(25 + 1 = r^2 \) \(25 + 1 = r^2 \)

\(26 = r^2 \)

\(26 = r^2 \)

Equation: \((x-2)^2 + (y-5)^2 = 26 \)