Find the equation (in slope-intercept form) for the tangent to the curve at the given point.

13) \(f(x) = \sqrt{x + 7}, \ (2, 3) \)

\[
f(x) = (x + 7)^{\frac{1}{2}}
\]

\[
f'(x) = \frac{1}{2} (x + 7)^{-\frac{1}{2}} (1)
\]

\[
m = f'(2) = \frac{1}{2} (2 + 7)^{-\frac{1}{2}} = \frac{1}{2} \cdot 9^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}
\]

\[
y - y_1 = m(x - x_1)
\]

\[
y - 3 = \frac{1}{6} (x - 2)
\]

\[
y - 3 = \frac{1}{6}x - \frac{1}{3}
\]

\[
y = \frac{1}{6}x - \frac{1}{3} + \frac{3}{1}
\]

Equation: \(y = \frac{1}{6}x + \frac{8}{3} \)

Find numbers \(a \) and \(b \), so that \(f \) is continuous at every point.
Find numbers a and b, so that f is continuous at every point.

14) \[f(x) = \begin{cases}
 x^2, & x < -5 \\
 ax + b, & -5 \leq x \leq -3 \\
 x + 12, & x > -3
\end{cases} \]

\[\lim_{x \to -5^-} f(x) = \lim_{x \to -5^-} (-5a + b) = -5a + b = 25 \] (i)

\[\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} (-3a + b) = -3a + b = 9 \] (ii)

\[-5a + b = 25 \]
\[-3a + b = 9 \]
\[\begin{cases}
 -5a + b = 25 \\
 3a - b = -9
\end{cases} \]
\[-2a = 16 \]
\[a = -8 \]

\[-3(-8) + b = 9 \]
\[24 + b = 9 \]
\[b = -15 \]

\[a = -8 \quad b = -15 \]
Evaluate the second derivative of the function for the given value of x. Give exact answer.

15) $f(x) = 4(1 + 3x)^5; \ x = \frac{1}{3}$

$f'(x) = 20(1 + 3x)^4 \cdot 3$

$f'(x) = 60(1 + 3x)^4$

$f''(x) = 240(1 + 3x)^3 \cdot 3$

$f''(x) = 720(1 + 3x)^3$

$f''(\frac{1}{3}) = 720 \left(1 + 3 \left(\frac{1}{3}\right)\right)^3$

$= 720 \left(2\right)^3$

$= 5760$
16) Find all points of the graph of \(y = 5x^2 + 5x \) whose tangent lines are parallel to the line \(y - 55x = 0 \).

\[
\frac{dy}{dx} = 10x + 5 = 55
\]

\[
10x = 50 \\
x = 5
\]

\[
y = 5(5)^2 + 5(5) = 150
\]

Point(s): \((5, 150)\)
Find \(\frac{dy}{dx} \).

17) \(y = \left(\frac{2x + 4}{x - 4} \right)^4 \)

METHOD 1:

\[
\frac{dy}{dx} = 4 \left(\frac{2x+4}{x-4} \right)^3 \cdot \frac{d}{dx} \left[\frac{2x+4}{x-4} \right]
\]

\[
= \frac{U'V - UV'}{v^2}
\]

\[U = 2x-4 \quad V = x-4 \]
\[U' = 2 \quad V' = 1 \]

\[
\frac{dy}{dx} = 4 \left(\frac{2x+4}{x-4} \right)^3 \cdot \frac{2(x-4) - (2x+4)(1)}{(x-4)^2}
\]

\[= 4 \left(\frac{2x+4}{x-4} \right)^3 \cdot \frac{-12}{(x-4)^2} = \frac{-48}{(x-4)^2} \left(\frac{2x+4}{x-4} \right)^3 = \frac{-48(2x+4)^3}{(x-4)^5} \]
Ex. 2.6 (p. 145): Find the second derivative

2.) \(f(x) = 3x - 1 \)
 \[f'(x) = 3 \]
 \[f''(x) = 0 \]

10.) \(f(x) = x^{3/2} \)
 \[f'(x) = \frac{3}{2} x^{1/2} \]
 \[f''(x) = \frac{3}{4} x^{-1/2} \]

14.) \(h(x) = x^3(x^2-2x+1) \)
 \[h'(x) = 3x^2 - 2x^3 + x \]
 \[h''(x) = 6x^2 - 6x^3 + 1 \]

6.) \(f(x) = 4(x^2-1)^2 \)
 \[f'(x) = 8(x^2-1)(2x) \]
 \[f'(x) = 16x(x^2-1) \]
 \[f''(x) = 16x^3 - 16x \]
 \[f''(x) = 48x^2 - 16 \]

12.) \(g(t) = -\frac{4}{(t+2)^2} \)
 \[g'(t) = -4(t+2)^{-3} \]
 \[g''(t) = -24(t+2)^{-4} \]

Find third derivative:

20.) \(f(x) = \frac{1}{x} \)
 \[f(x) = x^{-1} \]
 \[f'(x) = -x^{-2} \]
 \[f''(x) = 2x^{-3} \]
 \[f'''(x) = -6x^{-4} = \frac{-6}{x^4} \]

24.) \(f(t) = \sqrt{2t+3} \)
 Find \(f'''(\frac{1}{2}) \)
 \[f(t) = (2t+3)^{1/2} \]
 \[f'(t) = \frac{1}{2} (2t+3)^{-1/2} \]
 \[f''(t) = \frac{-1}{4} (2t+3)^{-3/2} \]
 \[f'''(t) = \frac{3}{8} (2t+3)^{-5/2} \]
 \[f'''(\frac{1}{2}) = \frac{3}{8} (2(\frac{1}{2})+3)^{-5/2} = \frac{3}{32} \]
Implicit Differentiation

Recall the Chain Rule:
\[
\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)
\]

Recall also that the Chain Rule applies to a composition of functions: \(f(g(x))\).

Now, examine the following example:

Suppose \(y = x^5 - 3x^2 + 7\) \(\Rightarrow\) \(\frac{dy}{dx} = 5x^4 - 6x\)

Then \(y^3 = (x^5 - 3x^2 + 7)^3\)

What is the derivative of \(y^3 = (x^5 - 3x^2 + 7)^3\) ?

Ans.: \(\frac{d}{dx}[y^3] = \frac{d}{dx}[(x^5 - 3x^2 + 7)^3]\) \(\ldots\) using the Chain Rule…

Continued on the next slide…
Implicit Differentiation

Example continued:
\[
\frac{d}{dx} [y^3] = \frac{d}{dx} \left[(x^5 - 3x^2 + 7)^3 \right]
\]

...using the Chain Rule:
\[
= 3 \left(x^5 - 3x^2 + 7 \right)^2 \cdot \frac{d}{dx} [x^5 - 3x^2 + 7] \\
= 3 \left(x^5 - 3x^2 + 7 \right)^2 \cdot (5x^4 - 6x) \\
= 3y^2 \cdot \frac{dy}{dx}
\]

So...
\[
\frac{d}{dx} [y^3] = 3y^2 \cdot \frac{dy}{dx}
\]

Note: ➢ The derivative resembles a regular derivative
➢ An additional \(dy/dx \) is multiplied in the derivative. Why?
➢ We use the Chain Rule to do the derivative.
Implicit Differentiation

A Loose Description of Implicit Differentiation:

\[
\frac{d}{dx} [f(y)] = f'(y) \cdot \frac{dy}{dx}
\]

To differentiate a function of \(y \) with respect to \(x \):

- Differentiate the function as usual (in terms of \(y \)), then
- Multiply by \(\frac{dy}{dx} \).

Note: When differentiating keep the following in mind:

- Always differentiate BOTH SIDES of the equation with respect to the same variable.
- The variable that we differentiate with respect to occurs in the denominator of the derivative expression. For example, if we are seeking \(\frac{dy}{dx} \), then differentiate with respect to \(x \). If we are seeking \(\frac{dV}{dt} \), then differentiate with respect to \(t \).
Implicit Differentiation

Example:

Find \(\frac{dy}{dx} \) for \(x^2 - y^3 = 3 \)

\[
\frac{d}{dx}[x^2 - y^3] = \frac{d}{dx}[3]
\]

Note that we differentiate both sides with respect to \(x \).

\[
\frac{d}{dx}[x^2] - \frac{d}{dx}[y^3] = \frac{d}{dx}[3]
\]

Steps:

- Differentiate both sides with respect to \(x \). Use the sum/difference rule where necessary.

- Determine whether the term we differentiate contains \(x \) or \(y \). If it is a function of \(x \), then regular derivatives (since we differentiate with respect to \(x \)). If it is a function of a variable other than \(x \), (\(y \) in this case), then it is implicit differentiation.
Implicit Differentiation

Example (Cont’d):

\[
\frac{d}{dx}[x^2] - \frac{d}{dx}[y^3] = \frac{d}{dx}[3]
\]

\[
2x - 3y^2 \frac{dy}{dx} = 0
\]

\[
= 2x - 2x
\]

\[
= 3y^2 \frac{dy}{dx} = \frac{2x}{3y^2}
\]

\[
\frac{dy}{dx} = \frac{2x}{3y^2}
\]

Steps:

- Differentiate each term using the appropriate rules of differentiation.
 Remember, for implicit differentiation, differentiate as usual, but multiply by \(dy/dx\) at the end.

- Solve the equation for \(dy/dx\).
Implicit Differentiation

Another Example:

Find \(\frac{dy}{dx} \) for \(x^2y - y^2x = -6 \)

at \((2,-1)\).

\[
\frac{d}{dx} \left[x^2y \right] - \frac{d}{dx} \left[y^2x \right] = \frac{d}{dx} \left[-6 \right]
\]

For \(\frac{d}{dx} \left[x^2y \right] \),

let \(f(x) = x^2 \) & \(g(x) = y \)

So \(\frac{d}{dx} \left[x^2y \right] = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)

Steps:

- Differentiate both sides with respect to \(x \). Use the sum/difference rule where necessary.

- To differentiate a product, use the Product Rule. Be sure to put all \(x \) in one fxn and all \(y \) in the other.

One fxn in terms of \(x \)

One fxn in terms of \(y \)

Continued on next slide…
Implicit Differentiation

Example 1 (Cont’d):
\[
\frac{d}{dx}[x^2y] - \frac{d}{dx}[y^2x] = \frac{d}{dx}[-6]
\]

Steps:

➢ Note that both parts of the product are in fxns of x: \(f(x)\) & \(g(x)\).

➢ When doing each differentiation, be sure to identify whether you need to do implicit differentiation or regular differentiation.

For \(\frac{d}{dx}[x^2y]\),

let \(f(x) = x^2\) & \(g(x) = y\)

\(f(x) = x^2 \Rightarrow f'(x) = 2x\)

Regular differentiation, since \(f(x)\) is a fxn of \(x\) and we differentiate \(dx\).

\(g(x) = y \Rightarrow g'(x) = 1 \cdot \frac{dy}{dx} = \frac{dy}{dx}\)

Implicit differentiation, since \(f(x)\) is a fxn of \(y\) and we differentiate \(dx\).

Continued on next slide…
Implicit Differentiation

Example 1 (Cont’d):

\[f(x) = x^2 \implies f'(x) = 2x \]

\[g(x) = y \implies g'(x) = 1 \cdot \frac{dy}{dx} = \frac{dy}{dx} \]

\[
\frac{d}{dx} [x^2 y] = f'(x) \cdot g(x) + f(x) \cdot g'(x)
\]

\[
= 2x \cdot y + x^2 \cdot \frac{dy}{dx} = 2xy + x^2 \frac{dy}{dx}
\]

Steps:

- **Complete the Product Rule.** Be careful to substitute carefully.

- **Do the same for all products.**

Similarly, for \(\frac{d}{dx} [y^2 x] \)

let \(f(x) = y^2 \)** &** \(g(x) = x \)**

\[\Rightarrow f'(x) = 2y \frac{dy}{dx} \quad g'(x) = 1 \]

\[
\frac{d}{dx} [y^2 x] = 2y \frac{dy}{dx} \cdot x + y^2 \cdot 1 = 2xy \frac{dy}{dx} + y^2
\]

Regular differentiation, since \(g(x) \) is a fn of \(x \) and we differentiate \(dx \).

Implicit differentiation, since \(f(x) \) is a fn of \(y \) and we differentiate \(dx \).

Continued on next slide…
Example 1 (Cont’d):

\[
\frac{d}{dx}[x^2 \cdot y] - \frac{d}{dx}[y^2 \cdot x] = \frac{d}{dx}[-6]
\]

\[
\left(2xy + x^2 \frac{dy}{dx}\right) - \left(2xy \frac{dy}{dx} + y^2\right) = 0
\]

\[
\left(2(2)(-1) + (2^2) \frac{dy}{dx}\right) - \left(2(2)(-1) \frac{dy}{dx} + (-1)^2\right) = 0
\]

\[-4 + 4 \frac{dy}{dx} + 4 \frac{dy}{dx} - 1 = 0\]

\[8 \frac{dy}{dx} = 5 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{5}{8}\]

Steps:

- Substitute all derivatives into the original equation.
- Since we wish to find \(dy/dx\) at point \((2, -1)\), substitute \(x = 2\) & \(y = -1\), then solve for \(dy/dx\).

Answer
Ex. 2.7 p. 152
Find \(\frac{dy}{dx} \):

4) \(4x^2y - \frac{3}{y} = 0 \)

\[4x^2y - 3y^{-1} = 0 \]

\[\frac{d}{dx} \left[4x^2y \right] = u'v + uv' \]

\(u(x) = 4x^2 \Rightarrow u'(x) = 8x \)
\(v(x) = y \Rightarrow v'(x) = \frac{dy}{dx} \)

\[\frac{d}{dx} \left[4x^2y \right] = 8xy + 4x^2 \frac{dy}{dx} \]

So \[\frac{d}{dx} \left[4x^2y - 3y^{-1} \right] = \frac{d}{dx} [0] \]

\[8xy + 4x^2 \frac{dy}{dx} + 3y^{-2} \frac{dy}{dx} = 0 \]

Factor \(\frac{dy}{dx} \)

\[\frac{dy}{dx} \left(4x^2 + 3y^{-2} \right) = -8xy \]

\[\frac{dy}{dx} = \frac{-8xy}{4x^2 + 3y^{-2}} \]
Ex. 2.7 p. 152
Find \(\frac{dy}{dx} \):

8.) \(2x y^3 - x^2 y = 2 \)

Differentiate \(\frac{d}{dx} \):

\[
(u'v + uv') - (p'q + pq') = \frac{d}{dx} \left[2 \right]
\]

\(u(x) = 2x \) \quad \(p(x) = x^2 \)

\(u'(x) = 2 \) \quad \(p'(x) = 2x \)

\(v(x) = y^3 \) \quad \(q(x) = y \)

\(v'(x) = 3y^2 \frac{dy}{dx} \) \quad \(q'(x) = \frac{dy}{dx} \)

\[
2 y^3 + 6xy^2 \frac{dy}{dx} - 2xy - x \frac{dy}{dx} = 0
\]

\[
\frac{dy}{dx} \left(6xy^2 - x^2 \right) = 2xy - 2y^3
\]

\[
\frac{dy}{dx} = \frac{2xy - 2y^3}{6xy^2 - x^2}
\]
Ex. 2.7 p. 152

Find \(\frac{dy}{dx} \):

10.) \(\frac{xy - y^2}{y - x} = 1 \) multiply by \(y - x \)

\[
xy - y^2 = y - x
\]

\[
\frac{d}{dx} \left(xy \right) - \frac{d}{dx} \left(y^2 \right) = \frac{d}{dx} [y] - \frac{d}{dx} [x]
\]

\[
(u'v + uv') - 2y \frac{dy}{dx} = \frac{dy}{dx} - 1
\]

\[
\begin{align*}
 u(x) &= x \\
 u'(x) &= 1 \\
 v(x) &= y \\
 v'(x) &= \frac{dy}{dx}
\end{align*}
\]

\[
y + x \frac{dy}{dx} - 2y \frac{dy}{dx} = \frac{dy}{dx} - 1
\]

\[
\frac{dy}{dx} (x - 2y - 1) = -y - 1
\]

\[
\frac{dy}{dx} = \frac{-y - 1}{x - 2y - 1}
\]