\[\frac{dV}{dt} = 2.5 \text{ ft}^3/\text{min} \]

Find \(\frac{dy}{dt} \) at \(y = 2 \)

\[V = Bh = \frac{1}{2}bh \cdot 15 \]

\[V = \frac{15}{2} xy \]

\[\frac{4}{3} = \frac{x}{y} \quad V = \frac{15}{2} \cdot \frac{4}{3} y \cdot y \]

\[\frac{4}{3} y = x \quad V = 10 y^2 \]

\[\frac{dV}{dt} = 20y \frac{dy}{dt} \]

\[2.5 = 20 \cdot (2) \frac{dy}{dt} \quad \Rightarrow \quad \frac{dy}{dt} = \frac{2.5}{40} = 0.0625 \text{ ft/min} \]
Solve the problem.

1) Given the revenue and cost functions \(R = 26x - 0.5x^2 \) and \(C = 6x + 15 \), where \(x \) is the daily production, find the rate of change of profit with respect to time when 20 units are produced and the rate of change of production is 8 units per day.

\[
p = R - C = 26x - 0.5x^2 - (6x + 15)
\]

\[
p = 20x - 0.5x^2 - 15
\]

\[
\frac{dp}{dt} = 20 \frac{dx}{dt} - x \frac{dx}{dt}
\]

\[
\frac{dx}{dt} = 8 \quad x = 20
\]

\[
\frac{dp}{dt} = 20(8) - 20(8) = 0 = 0
\]
2) Water is being drained from a container which has the shape of an inverted right circular cone. The container has a radius of 4.00 inches at the top and a height of 5.00 inches. At the instant when the water in the container is 1.00 inches deep, the surface level is falling at a rate of 0.6 in./sec. Find the rate at which water is being drained from the container.

\[V = \frac{1}{3} \pi r^2 h \Rightarrow V = \frac{1}{3} \pi x^2 y \]

\[V = \frac{1}{3} \pi \left(\frac{4}{5} y\right)^2 y \Rightarrow V = \frac{16 \pi y^3}{75} \]

\[\frac{dV}{dt} = \frac{48}{75} \pi y^2 \frac{dy}{dt} \]

\[\frac{dV}{dt} = \frac{16}{25} \pi \left(\frac{4}{5} y\right)^2 (-0.6) = -\frac{48}{125} \pi \text{ in}^3/\text{sec} \]

\[V = -0.384 \pi \text{ in}^3/\text{sec} \approx -1.206 \text{ in}^3/\text{sec} \]
3) The volume of a sphere is increasing at a rate of 8 cm3/sec. Find the rate of change of its surface area when its volume is $\frac{32\pi}{3}$ cm3. (Do not round your answer.)

We know $\frac{dV}{dt} = 8$ cm3/sec. \[V = \frac{32\pi}{3} \]

Find $\frac{dA}{dt}$

\[A = 4\pi r^2 \]

\[\frac{dA}{dt} = 8\pi r \frac{dr}{dt} \]

\[\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \]

\[8 = 4\pi (2)^2 \frac{dr}{dt} \]

\[\frac{1}{2\pi} = \frac{dr}{dt} \]

\[= 4 \text{ cm}^2/\text{sec.} \]
Find an equation for the line tangent to given curve at the given value of \(x \).

1) \(y = \frac{x^2}{2}; \ x = 3 \)

\[m = \frac{dy}{dx} = \frac{2x}{2} = x = 3 \quad \text{at} \quad \left(3, \frac{9}{2}\right) \]

A) \(y = 6x - 4.5 \)
B) \(y = 3x - 9 \)
C) \(y = 3x + 4.5 \)
D) \(y = 3x - 4.5 \)

\[y - 4.5 = 3(x - 3) \Rightarrow y = 3x - 9 + 4.5 \Rightarrow y = 3x - 4.5 \]

Find all values of \(x \) (if any) where the tangent line to the graph of the function is horizontal.

2) \(y = 2 + 8x - x^2 \)

\[\frac{dy}{dx} = 8 - 2x = 0 \]

A) \(-8\)
B) \(8\)
C) \(-4\)
D) \(4\)

Solve the problem.

3) The total cost to produce \(x \) handcrafted wagons is \(C(x) = 120 + 2x - x^2 + 7x^3 \). Find the marginal cost when \(x = 5 \).

A) 517
B) 637
C) 980
D) 860

4) A ball is thrown vertically upward from the ground at a velocity of 97 feet per second. Its distance from the ground after \(t \) seconds is given by \(s(t) = -16t^2 + 97t \). At what rate is the ball moving 4 seconds after being thrown?

A) 33 ft per sec
B) 132 ft per sec
C) \(-31\) ft per sec
D) \(-43\) ft per sec

Find the derivative.

5) \(y = \sqrt{4x + 2} \)

A) \(\frac{dy}{dx} = \frac{8}{2} \)
B) \(\frac{dy}{dx} = \frac{2}{2} \)
C) \(\frac{dy}{dx} = \frac{1}{2} \)
D) \(\frac{dy}{dx} = \frac{4}{2} \)
Find the derivative.

5) \(y = \sqrt{4x + 2} \)

A) \(\frac{dy}{dx} = \frac{8}{\sqrt{4x + 2}} \)

B) \(\frac{dy}{dx} = \frac{2}{\sqrt{4x + 2}} \)

C) \(\frac{dy}{dx} = \frac{1}{\sqrt{4x + 2}} \)

D) \(\frac{dy}{dx} = \frac{4}{\sqrt{4x + 2}} \)

\[\frac{dy}{dx} = \frac{1}{2} (4x + 2)^{-\frac{1}{2}} \cdot 4 = \frac{2}{\sqrt{4x + 2}} \]
Sec. 3.2 Extrema (Extreme Values) of a Function

Global Extrema:
Let \(f \) be a function defined on an interval \(I \) containing \(c \).
1. \(f(c) \) is an absolute minimum of \(f \) on \(I \) if \(f(c) \leq f(x) \) for all \(x \) in \(I \).
2. \(f(c) \) is an absolute maximum of \(f \) on \(I \) if \(f(c) \geq f(x) \) for all \(x \) in \(I \).

Critical Number: An \(x \)-value where a maximum or a minimum can occur.
Critical numbers occur at endpoints and at points where the graph changes direction:
- Turning point
- Singularity point (a point where the function is continuous but has no derivative)

Note:
Maxima and minima are \(y \)-values.
The Extreme Value Theorem
If \(f \) is a continuous function on the closed interval \([a, b]\), then \(f \) must have both a (global) maximum and a (global) minimum.

Note: Two important conditions:
- Function must be continuous on the whole interval.
- The interval must be closed.

\[
\text{f is continuous on } [a, b] \\
\text{Minimum is } f(a) \\
\text{Maximum is } f(x_3)
\]

Local (Or Relative) Extrema
Let \(f \) be a function defined at \(x = c \).
1. \(f(c) \) is a relative maximum if there is an open interval \((a, b)\) containing \(c \) such that \(f(x) \leq f(c) \) for all \(x \) in \((a, b)\).
2. \(f(c) \) is a relative minimum if there is an open interval \((a, b)\) containing \(c \) such that \(f(x) \geq f(c) \) for all \(x \) in \((a, b)\).
The First Derivative Test:
1. Find all critical numbers: Endpoints, turning points (derivative = 0) and singularity points (derivative Does Not Exist).

2. Set up a table with a space before and after each internal critical number, and a space after the left endpoint and before the right endpoint (if any).

3. Find the derivative of a representative x-value between the critical numbers.

4. If the derivative is positive, then f is increasing in that interval (between the critical numbers). If the derivative is negative, then f is decreasing in that interval.

5. If the graph increases before and decreases after a critical number, then the critical number marks a local maximum. If the graph decreases before and increases after a critical number, then the critical number marks a local minimum.

Ex. 3.2 (p. 223): Find all relative extrema for the function.

\[f(x) = -4x^2 + 4x + 1 \]

C.N.: \[f'(x) = -8x + 4 \]
Set \[f'(x) = 0 \] \[\Rightarrow -8x + 4 = 0 \]
\[x = \frac{1}{2} \]

So turning pt. \(x = \frac{1}{2} \)

Since \(f'(x) > 0 \) when \(x < \frac{1}{2} \) and \(f'(x) < 0 \) when \(x > \frac{1}{2} \),
then relative max. at \(x = \frac{1}{2} \), rel. max. is \(f(\frac{1}{2}) = 2 \)
Ex. 3.2 (p. 223): Find all relative extrema for the function.

8) \(h(x) = 2(x-3)^3 \)

C.N.: Turning pt.: \(h'(x) = 6(x-3)^2 \)

Set \(h'(x) = 0 \) \(\Rightarrow \frac{6(x-3)^2}{6} = 0 \) \(\Rightarrow \sqrt{(x-3)^2} = 0 \)

\(x - 3 = 0 \) \(\Rightarrow x = 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h'(x))</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Since the \(h'(x) > 0 \) before and after \(x = 3 \), then the graph does not change directions. So no extremum.

\(h'(2) = 6(2-3)^2 = 6 \)

\(h'(4) = 6(4-3)^2 = 6 \)
Ex. 3.2 (p. 223): Find all relative extrema for the function.

\[h(x) = \frac{4}{x^2 + 1} = 4(x^2 + 1)^{-1} \]

\[h'(x) = -4(x^2 + 1)^{-2} \cdot 2x = \frac{-8x}{(x^2 + 1)^2} \]

Set \(h'(x) = 0 \):

\[\frac{-8x}{(x^2 + 1)^2} = 0 \Rightarrow \frac{-8x}{(x^2 + 1)^2} \text{ top} \]

Is there any point where \(h'(x) \) DNE? \(\text{NO} \).

\[(x^2 + 1)^2 = 0 \Rightarrow x^2 = -1 \text{ not real.} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Relative maximum at \(x = 0 \) because \(h'(x) > 0 \) for \(x < 0 \) (increasing)

\[h'(x) < 0 \text{ for } x > 0 \text{ (decreasing)} \]

Relative max is \(h(0) = 4 \).
Ex. 3.2: Find the absolute extrema of the function on the closed interval.

22) \(f(x) = x^2 + 2x - 4 \) on \([-1, 1]\)

Calculate the endpoints:
\[x = -1, \quad x = 1 \]

Let's find the turning point(s):

\[f'(x) = 2x + 2 \]

Set \(f'(x) = 0 \):
\[2x + 2 = 0 \quad \Rightarrow \quad x = -1 \]

Evaluate the function at the critical point and endpoints:

\[f(-1) = (-1)^2 + 2(-1) - 4 = -5 \]

\[f(1) = 1^2 + 2(1) - 4 = -1 \]

So, absolute maximum is \(-1\) at \(x = 1 \)

Absolute minimum is \(-5\) at \(x = -1 \)
Sec. 3.3: Concavity and the Second Derivative Test.

The Relationship among a function, its derivative and its second derivative:
- The second derivative is the derivative of the (first) derivative.
- The first derivative tells whether the function is increasing or decreasing:
 - If first derivative is negative, then function is decreasing
 - If first derivative is positive, then the function is increasing.

- The second derivative is to the first derivative what the first derivative is to the function.
- The second derivative tells whether or not the first derivative is increasing or not (the slope of the slopes).

Case 1: \(f'' < 0 \) **CONCAVE DOWN**
- Slopes are getting less and less (more and more negative)
- The graph is slowing down its rate of increase, or increasing its rate of decrease:

Case 2: \(f'' > 0 \) **CONCAVE UP**
- Slopes are getting greater (more and more positive)
- The graph is increasing its rate of increase, or slowing down its rate of decrease:

![Graph showing concave up and concave down cases with slopes and arrows indicating changes in behavior.]
Basis of the Second Derivative Test:
- When the second derivative is positive, the graph of f is concave up.
- When the second derivative is negative, the graph of f is concave down.
- What happens at turning points?

Case 1: Local Minimum:
- Concave up.
- First derivative is zero (turning point)
- Second derivative is positive (concave up)

Case 2: Local Maximum:
- Concave down.
- First derivative is zero (turning point)
- Second derivative is negative (concave down)

Note:
If both f' and f'' are zero, then we cannot draw a conclusion from this approach.

Inflection Point: $f'' = 0$
A point where the graph changes concavity: from concave up to concave down, or from concave down to concave up.
Ex. 3.3 (P. 232): Find the point(s) of inflection of the graph of the function.

32) \(f(x) = x(6-x)^2 \)

\[u = x \quad u' = 1 \]
\[v = (6-x)^2 \quad v' = 2(6-x)(-1) = -2(6-x) = -12 + 2x \]

\[f'(x) = u'v + uv' \]
\[f'(x) = (6-x)^2 + x(-12+2x) = (6-x)^2 - 12x + 2x^2 \]

\[f''(x) = 2(6-x)(-1) - 12 + 4x = -12 + 2x - 12 + 4x \]
\[f''(x) = -24 + 6x \]

Set \(f''(x) = 0 \implies -24 + 6x = 0 \)
\[x = 4 \]

\[f'''(3) = -24 + 6(3) = -6 \quad \text{Concave down} \]
\[f''(5) = -24 + 6(5) = 6 \quad \text{Concave up} \]

So Inflection Pt: \((4, f(4)) = (4, \underline{16})\)